Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy.(heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.
Heat conduction, also called diffusion, is the direct microscopic exchange of kinetic energy of particles through the boundary between two systems. When an object is at a different temperature from another body or its surroundings, heat flows so that the body and the surroundings reach the same temperature, at which point they are in thermal equilibrium. Such spontaneous heat transfer always occurs from a region of high temperature to another region of lower temperature, as described in the second law of thermodynamics.
Heat convection occurs when bulk flow of a fluid (gas or liquid) carries heat along with the flow of matter in the fluid. The flow of fluid may be forced by external processes, or sometimes (in gravitational fields) by buoyancy forces caused when thermal energy expands the fluid (for example in a fire plume), thus influencing its own transfer. The latter process is often called "natural convection". All convective processes also move heat partly by diffusion, as well. Another form of convection is forced convection. In this case the fluid is forced to flow by use of a pump, fan or other mechanical means.
Thermal radiation occurs through a vaccum or any transparent medium (solid or fluid or gas). It is the transfer of energy by means of photons in electromagnetic waves governed by the same laws. K is thermal conductivity. T1-T2 is the temperature difference between the two ends.A is the area of cross section.If the area of cross section is not uniform the equation can only be applied to thin layer
Heat transfer is a process function (or path function), as opposed to functions of state; therefore, the amount of heat transferred in a thermodynamic process that changes the state of a system depends on how that process occurs, not only the net difference between the initial and final states of the process.
Thermodynamic and mechanical heat transfer is calculated with the heat transfer coefficient the proportionality, between the heat flux and the thermodynamic driving force for the flow of heat. Heat flux is a quantitative, vectorial representation of heat-flow through a surface.
The transport equations for thermal energy (fourier's law), mechanical momentum (Newton's law for fluids), and mass transfer ( Fick"s laws Of diffusion) are similar, and analogies among these three transport processes have been developed to facilitate prediction of conversion from any one to the others.
Thermal engineering concerns the generation, use, conversion, and exchange of heat transfer. As such, heat transfer is involved in almost every sector of the economy. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes.
Credit:-https://en.m.wikipedia.org/wiki/Heat_transfer
Comments
Post a Comment